The Natural Exponential Function: $f(x) = e^x$, where e is the constant 2.718281828... and x is the variable.

X	Y1	
-3	.04979	
-2 -1	.13534 .36788	
ļ Ģ	1	
120	2.7183 7.3891	
3	20.086	
X= -3		

I. Evaluating the Natural Exponential Function:

Use a calculator to evaluate the function.

1.
$$f(x) = e^{6.2}$$

2.
$$f(x)=e^{-0.4}$$

3.
$$f(x)=e^{-7.1}$$

II. One To One Property: With e

1.

2.

3.

4.

Logarithmic Functions & Their Graphs

- (a.) Is the equation y=2× a function? _____Why or Why not? ____
- (b.) Does the equation y=2× have an inverse? ____ Why or Why not? _____
- (c.) What is it's inverse?

I. Logarithmic Function with Base a:

The inverse function of every function in the form $f(x) = a^x$ is the logarithmic function with base a. Examples:

Logarithmic Function	Exponential Form	<u> </u>
$\log_a x = y$	$a^y = x$	2.
$2 = \log_3 9$		- 3.
	$16 = 4^2$	
$3 = \log_2 8$		
	$125 = 5^3$	

Evaluate the following logarithms.

1.
$$f(x) = \log_2 32$$

2.
$$f(x) = \log_3 1$$

3.
$$f(x) = \log_4 2$$

II. Common Logarithmic Function has a base of 10.

We write _____or ____.

Evaluate with a Calculator.

$$2. \log\left(\frac{1}{3}\right)$$

III. Properties of Logarithms (log)

Examples:

1.
$$\log_4 1 = x$$

2.
$$\log_{\sqrt{11}} \sqrt{11} = x$$

1.
$$\log_a 1 = 0$$
 because $a^0 = 1$

2.
$$\log_a a = 1$$
 because $a^1 = a$

3.
$$\log_a a^x = x$$
 because $a^{\log_a x} = x$

4. If
$$\log_a x = \log_a y$$
, then $x = y$

3.
$$5^{\log_5 10} = x$$

4.
$$\log_5 y = \log_5 16$$

5.
$$\log(4-3x) = \log(x+2)$$

6.
$$\log_3(x^2+4) = \log_3 29$$

VI. The Natural Logarithmic Function (In)
$$f(x) = \log_e x = \ln x, x > 0$$

Properties of Natural Logarithms

1.
$$\ln 1 = 0$$
 because $e^0 = 1$

2.
$$\ln e = 1$$
 because $e^1 = e$

Examples: Simplify each expression.

$$1. \quad \ln\frac{1}{e} =$$

2.
$$e^{\ln 5} =$$

3.
$$\ln e^x = x$$
 and $e^{\ln x} = x$

4. If
$$\ln x = \ln y$$
, then $x = y$

3.
$$\frac{\ln 1}{3}$$
=

V. What about $\log_4 25 = x$???

Change-of-Base Formula: $\log_a x = \frac{\log x}{\log a}$

1)
$$\log_4 25 = x$$

2)
$$\log_2 12 = x$$

3)
$$\ln_7 5 = x$$

PRACTICE:

2.
$$5^{2x-3}$$
 = 100

3.
$$e^{x} = 22$$

5.
$$e^{x+5} = 41$$

9.
$$x = log_3 12.3$$

12.
$$4^{1-2x} = 3$$